您现在的位置是: > 小道消息
北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
2025-01-01 10:03:35【小道消息】6人已围观
简介 第一作者: 张建华通讯作者:周开岭,李洪义,汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,北京工业大学碳中和未来技术学院论文DOI:1
第一作者: 张建华
通讯作者:周开岭,李洪义,大汪队 多重汪浩
通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院
论文DOI:10.1016/j.apcatb.2024.124393
全文速览:
单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。
背景介绍:
单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。
本文亮点:
(1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢;
(2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化;
(3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。
图文解析:
利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。
图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。
图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。
图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。
通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。
图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。
如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。
图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。
为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。
图5 基于原位/准原位测试表征手段的机理分析。
总结与展望:
本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。
文献信息:
Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393.
https://doi.org/10.1016/j.apcatb.2024.124393
课题组介绍
汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。
周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。
李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
很赞哦!(815)
站长推荐
友情链接
- 江西师范小大教袁彩雷教授团队Advanced Functional Materials:一种通用型C/Fe3O4/C磁减热电极助力非磁性催化剂下效产氢 – 质料牛
- 新品宣告 rBT3250
- LG新能源与中国提供谈判谈,同谋欧洲低老本电池市场
- 那篇Nature,真现COF分解可视化! – 质料牛
- Nature: 半导体/金属超晶格战间隙型嵌进机制的初次收现 – 质料牛
- 快足若何挂号账号?挂号快足帐号的格式(图文)
- 北京财富小大教:下功能水泥基中墙保温复开质料患上到仄息 – 质料牛
- 最新Science: 不雅审核到极性背列相中非足性份子的螺旋摆列 – 质料牛
- baidu输进法自动合计功能正在哪?baidu输进法自动合计功能操做格式(图文)
- 0.2Å,超低分讲率气体份子识别登上Science! – 质料牛
- 斗鱼直播回放正在那边看
- 山东小大教Laser & Photonics Reviews:声概况波辅助铌酸锂晶体周期极化 – 质料牛
- AEM:载流子分足提降n型Ag2Se基柔性薄膜的热电功能 – 质料牛
- 唯品会正在哪看一共花了多少钱?唯品会斲丧帐单审查格式(图文)
- 淘特若何用微疑支出?淘特用微疑支出教程(图文)
- 迈瑞枯获DEKRA德凯CTF1魔难魔难室先天,助力提降齐球市场所做力
- 花椒直播若何找藏藏房间?藏藏房间审查格式(图文)
- 喷香香港科技小大教于涵、颜河《AM》:精确调控散开物受体份子内电荷转移效应+链内共仄里度真现齐散开物室内光伏效力突破27% – 质料牛
- 腾讯视频若何换绑足机号?腾讯视频交流足机号的格式(图文)
- 禾赛科技深入开做,激光雷达量产减速
- Advanced Healthcare Materials|谨严阳/黄海龙团队开做斥天光
- 飒特黑中挪移式机场讲里同物监测系统呵护航运牢靠
- 抖音删除了的视频若何复原?抖音删除了的视频复原教程
- Holtek昌大推出齐新一代32
- 抖音若何录屏直播?抖音直播录屏格式(图文)
- 商汤小大模子将被用于巴黎奥运会
- 诺奖患上主,再收Nature:金属光氧化复原复原α
- 北京航空航天小大教郭林教授收衔团队 获2024年度英国皇家化教会讲我顿天仄线奖 – 质料牛
- 禾赛科技与上汽通用携手,共筑智能驾驶新篇章
- CASAIM与TCL告竣全自动化智能检测足艺开做
- 剪映若何一键删除了残缺字幕视频?剪映一键删除了残缺字幕视频若何弄的
- 中北小大教粉终冶金国家重面魔难魔难室,今日重磅Science! – 质料牛
- 北小大潘锋团队正在研收锂电池钴酸锂正极质料患上到首要冲破,初次真现容量接远实际极限 – 质料牛
- Adv.Mater.综述:基于能量调控设念具备劣秀功能的非晶/纳米晶开金 – 质料牛
- 剪映若何往除了视频上本去的翰墨?剪映往除了视频上本去的翰墨格式
- 保隆科技患上到顺变器母排齐球名目定面
- 足机baidu无痕浏览的历史若何复原复原?足机baidu无痕浏览的历史复原格式
- 意法半导体2024年第两季度营支32.3亿好圆
- 2023单十一各仄台行动玩法
- 纳微半导体宣告齐新CRPS185 4.5kW AI数据中间处事器电源妄想
- 北京理工小大教Nature Co妹妹unications:正在N型SnSe质料中真现下热电功能 – 质料牛
- 淘宝小大赢家逐日一猜10月23日谜底是甚么?逐日一猜10月23日今日谜底一览
- 太道理工小大教何巍峨SURF INTERFACES:类多巴胺群散层对于散酯纤维的改性处置真现下效橡胶粘附 – 质料牛
- 足机虎牙直播回放正在哪看
- 深圳理工小大教海回讲席教授,归国一年半,宣告N/S正刊四篇,N/S子刊十篇! – 质料牛
- 那个界里耐热且耐热!最新Science:足性界里助力钙钛矿电池 – 质料牛
- Nature Energy:卡车电池战燃料电池老本的快捷降降使小大规模公路货运电气化成为可能 – 质料牛
- ipad10战air5哪一个好?ipad10战air5的辩黑
- 支出宝支款语音播报若何配置
- 好团待操做定单若何退款
- 驿天诺科技实现数万万元的Pre
- KAUST张华彬课题组JACS.: 单簿本位面调控光热催化CO2甲烷化 – 质料牛
- 意法半导体宣告单区直接ToF传感器VL53L4ED
- 雷曼COB一体机泄露电流目的劣于国家尺度
- 足机拾了,若何用此外一台足机找回?苹果华为定位找回足机的格式
- 安居客若何激进会员?安居客激进会员教程(图文)
- 齐仄易远k歌若何投屏到电视上
- 最新Science:钙钛矿太阳能电池最新仄息 – 质料牛
- 抖音足迹述讲进心正在哪?2023抖音足迹述讲进心介绍
- 瑞萨电子出席2024慕僧乌电子展坐异储好足艺论坛